本發明涉及一種采用圖形化金屬襯底的半導體激光芯片及其制備方法,解決現有半導體激光芯片采用砷化鎵材料作為芯片襯底時,芯片襯底產生的熱源熱量高,傳統散熱路徑在熱傳遞時存在熱阻大、散熱效率不佳的問題。本發明在原芯片襯底上開設刻蝕槽,在刻蝕槽內設置沉積金屬層替換部分砷化鎵襯底材料,而沉積金屬層內的金屬材料電阻低,導熱系數高,這種設計使芯片襯底整體的電阻值降低,熱源熱量減少,從而提升電光轉換效率;
本發明公開一種高循環穩定性的硅碳負極材料及其制備方法,硅碳負極材料以碳為基體,碳基體中均勻分散有硅內核顆粒,硅內核顆粒表層為硅和金屬合金層,硅和金屬合金層表面原位生長有碳化硅層。制備時首先以硅為內核,表層為硅和其他金屬合金的納米顆粒,隨后將此納米顆粒與樹脂類材料發生復合,經真空熱處理,形成納米顆粒均質分散于碳基體的復合材料形成硅碳負極材料。本發明中可以在較低溫度下制備出優異循環穩定性的硅碳復合負極材料,方法工藝簡單、成本低、環境友好和易于產業化,是一種較現有路線綜合性能更優的硅碳負極制備方法。
本發明公開了一種含氧化石墨烯復合物的硫電池正極材料及其制備方法,涉及電極材料制備技術領域;所述含氧化石墨烯復合物的硫電池正極材料由宿主材料負載硒摻雜硫化鈷、聚多巴胺修飾的氧化石墨烯和鋅基有機框架復合包覆材料組成;將負載Co納米粒子的宿主材料經過硫化硒化后,再將聚多巴胺修飾的氧化石墨烯和鋅基有機框架復合包覆材料對宿主材料負載硒摻雜硫化鈷的表面形成包覆層,進一步增強了硫電池正極材料的導電性,提高了對多硫化物的吸附能力和利用率,同時還為體積膨脹提供了充足的緩沖空間,顯著增強了電池性能和循環穩定性。
本發明公開了一種固相法制備硫化物固態電解質的方法,通過采用機械球磨結合熱處理的方式將鋰硫化合物、磷化物等原料在惰性氣體保護下球磨,隨后在一定溫度下進行熱處理,得到硫化物固態電解質。這種方法可以有效控制材料的粒徑和結晶度,提高離子電導率,從而增強電池的充放電性能。
本發明屬于電池材料技術領域,本發明提供了一種LATP固態電解質及其制備方法與用途,所述制備方法包括將LATP固態原料、無機弱酸粉末、有機醇粉末進行干混,所述有機醇粉末包括聚乙烯醇、聚乙二醇或聚丙烯醇中的至少一種,得到混合材料;將所述混合材料進行燒結,得到LATP固態電解質。通過采用有機醇粉末及無機弱酸粉末中和磷源及鋰源的酸堿性,有效保證反應高效、溫和且均勻;通過干混代替使用分散介質的長時間的濕法球磨,避免了因有機分散介質導致的多種原料出現分散不均勻及偏析現象
一種用于新能源鋰電池的安全防護裝置,包括箱體和轉動連接在其上的箱蓋,所述箱體側連接有一罩殼,該罩殼與箱體之間形成空間腔,空間腔內設有滅火器,所述滅火器通過管路連接至箱體內,空間腔內還設有散熱風扇,散熱風扇通過管路連接至箱體內,所述箱體底部設于通風孔;所述散熱風扇與滅火器共用同一管路,散熱通道和滅火劑通道擇一開啟。本發明中通過箱體將出現火情的隔箱滯留在其內,并通過滅火劑進行滅火,將未出現火情的隔箱拉出箱體進行保護;
本發明涉及鋰電池技術領域,尤其涉及一種退役鋰電池中鋰自供給再生的正極材料及其制備方法,該正極材料通過氮摻雜改性和修復再生形成,制備方法包括如下步驟:拆解退役鋰電池,處理分離出的石墨極片,得到鋰回收液;向鋰回收液中加入鹽酸多巴胺,分散退役的正極材料,使多巴胺包覆正極材料,得到內源性的補鋰和多巴胺聚合包覆的正極材料;將內源性的補鋰和多巴胺聚合包覆的正極材料通過噴霧干燥分散,經過多階段快速退火處理,重構廢舊正極材料的晶體結構同時使聚多巴胺分解,得到再生的正極材料。
本發明公開了一種分段冷卻系統及窯爐,屬于鋰電材料燒成技術領域,包括第一冷卻段和第二冷卻段,第一冷卻段與第二冷卻段相連,第一冷卻段上設有外循環冷卻裝置,外循環冷卻裝置包括排風機、第一排氣管道、進氣管道和冷卻夾套,第一排氣管道的一端與排風機相連,第一排氣管道的另一端與冷卻夾套連通,進氣管道與冷卻夾套連通,冷卻夾套設置在第一冷卻段內,第二冷卻段上設有內循環冷卻裝置,內循環冷卻裝置包括第二排氣管道和換熱器,第二排氣管道的一端與第二冷卻段連通,第二排氣管道的另一端與第二冷卻段連通,根據高溫的高低分段冷卻匣體內的鋰電正、負極材料可以通過增壓冷空氣來加快冷卻的速率,防止外部的空氣混入到爐內影響到材料的性能。
本發明屬于鋰金屬電池電解液技術領域,提供了一種適用于高溫高容量鋰電池的低揮發性電解液及其制備方法。首先通過咪唑與溴乙烷的烷基化反應制得1?乙基咪唑,并進一步與3,3,3?三氟丙基溴化物和2?氯乙醇甲醚反應,該離子液體分子設計中結合了三氟基團和醚基結構,三氟基團的引入降低了電解液的蒸汽壓,從而抑制高溫條件下的揮發性,乙醇甲醚基團中的氧原子與金屬鋰反應生成穩定的鋰醇鹽,有助于在負極表面形成致密而穩定的固態電解質界面膜;
本實用新型提供了一種鋰離子正極材料生產料倉的進料機構,采用輸送管道、陶瓷內襯、陶瓷緩沖塊和法蘭,陶瓷內襯作為輸送管道內襯,陶瓷緩沖塊固定于輸送管道末端,輸送管道與陶瓷內襯和陶瓷緩沖塊之間設有膠黏層固定連接,輸送管道相對陶瓷緩沖塊設有出料口;進而優化將陶瓷緩沖塊設置成楔形塊或錐形塊,并在末端設置阻擋板;該進料機構使用陶瓷材質,耐磨性充足,并且結構穩定,在物料輸送過程中,可以長期抵御物料的沖刷而不損壞,提升鋰電材料生產的穩定性和質量。
本發明提供了一種改性負極材料、其制備方法及應用。改性負極材料包括內層、包覆在內層表面的外層,內層包括石墨,外層中包括聚集結構體和鋰碳混合體,聚集結構體由納米硅、造孔劑和電解質自堆積形成,聚集結構體中具有縫隙,鋰碳混合體填充在聚集結構體的縫隙中,并延伸至外層的表面形成表面包覆層。本發明改性負極材料中,納米硅和造孔劑相互協同,有效弱化了在充放電過程中硅的體積膨脹,電解質的加入,促進了鋰離子在負極材料中的擴散和遷移,外層中鋰碳混合體
本申請提供一種硅碳復合材料及制備方法、電池。硅碳復合材料包括:內核,內核包括硅碳材料,硅碳材料包括多孔硅,多孔硅的至少部分填充有第一無定形碳;包覆層,包覆層包括第二無定形碳和含鋰無機物,第二無定形碳和含鋰無機物復合后包覆在內核表面的至少部分。在多孔硅的孔隙中填充無定形碳形成的硅碳材料具有較低的界面阻抗,能夠提升復合材料的電子導電性,此外,包覆層中的含鋰無機物與無定形碳形成的復合包覆層能夠提升材料的離子電導率,二者結合,能夠提升硅碳復合材料的倍率性能與循環性能。
本發明涉及電池制造技術領域,公開了無負極鈉金屬電芯及其初品和制備方法。無負極鈉金屬電芯初品,包括正極、隔膜、負極集流體以及電解液,電解液中包括鈉鹽和添加劑;添加劑包括聚合物單體熱分解型引發劑;熱分解型引發劑在聚合溫度下能夠引發聚合物單體發生聚合反應。制備方法包括:以小電流將無負極鈉金屬電芯初品充電至滿電狀態,鈉金屬在負極集流體沉積形成鈉金屬沉積層,獲得中間品電池;將中間品電池置于50~80℃的環境中擱置,使電解液中的聚合物單體聚合,在金屬沉積層上形成聚合物框架層,獲得成品的無負極鈉金屬電芯。
本發明公開了一種生物質基硬碳負極材料及其制備方法、鈉離子電池,涉及電池儲能技術領域。制備方法包括如下步驟:制備獲得第一混合溶液,第一混合溶液包括低熔點金屬氯化鹽、高熔點金屬硝酸鹽、酸液和水溶劑,第一混合溶液的pH為1.0?5.0中任一值;將生物質原料加入第一混合溶液,混合均勻后制備獲得第二混合溶液;對第二混合溶液依次進行抽濾、干燥,制備獲得生物質前驅體;將生物質前驅體放置于惰性保護氣體中并對其進行分段煅燒,并對煅燒產物依次進行粉碎、過篩,制備獲得硬碳負極材料。
本發明提供一種高循環高倍率磷酸錳鐵鋰正極材料的制備方法,涉及鋰離子電池正極材料制備技術領域,包括如下步驟:S1、以亞鐵鹽、二價錳鹽和第一摻雜金屬鹽為原料配置鐵錳液,與沉淀劑混合,反應得到鐵錳固溶中間體;S2、在氧化性氣氛中燒結,得到前驅體;S3、將前驅體與鋰源、磷源、第一碳源、第二摻雜金屬鹽溶解于純水中,研磨、噴霧、干燥、燒結,得到第一磷酸錳鐵鋰;S4、將第一磷酸錳鐵鋰與第二碳源、第三摻雜金屬鹽溶解于純水中,研磨、噴霧、干燥、燒結,得到磷酸錳鐵鋰正極材料;
本發明具體涉及一種提高耐鉻性的燃料電池陰極材料、制備方法及應用,屬于固體氧化物燃料電池領域。大型SOFC電堆通常采用含鉻合金作為金屬互連材料,對陰極具有一定的毒性,本發明采用元素氟對SrCo0.9Ta0.1O3?δ材料的O位進行部分取代制成SrCo0.9Ta0.1O3?δFx(SCTFx,x=0.05~0.2)材料,提升中溫固體氧化物電池陰極的耐鉻性。另外,上述陰極材料的制備工藝簡單,性能優越,具有良好的工業化前景。
本申請提供一種鈷包覆鎳錳酸鋰正極材料的制備方法,通過原位共沉淀法在前驅體表面構建微量鈷包覆層,利用鈷的電子傳導增強效應改善界面穩定性,保留材料體相無鈷特性,使材料具有完整的晶體結構,應用于鋰離子電池時具有較好的放電比容量和循環性能,首圈放電容量達到193.52 mAh/g,250圈循環保持率達到90.38%,電化學穩定性顯著增強。本申請還提供一種鈷包覆鎳錳酸鋰正極材料和鋰離子電池。
本發明公開了一種稀土電解槽用石墨陽極的制造方法,包括以下步驟:步驟一、配置陽極溶液:將石墨片加入化學品溶解液中時,經過一系列加工配置成陽極溶液;步驟二、制備陽極棒:將制備的陽極溶液投放在陽極棒模具內進行烘干定型,自然冷卻后脫模;步驟三、產品檢測:通過超聲探傷設備對制備出的陽極棒進行檢測,且,將不合格陽極棒置于石墨爐中進行處理轉化為合格的陽極棒;步驟四、產品鍍膜,本發明對檢測出不合格產品置于石墨爐中進行加工處理,有效去除陽極的不合格產品表面燒損的粉刺
本發明公開了高容量天然石墨基負極材料的充放電效率提升技術,包括制備高容量天然石墨基負極材料,高容量天然石墨基負極材料制備方法如下:A、首先將原材料混合,加入球磨機中球磨,得到混合物A;B、將混合物A加入預熱爐中進行加熱預熱;C、將預熱后的混合物轉移至高溫爐中進行高溫炭化,并在炭化過程中通入惰性氣體;D、然后再轉移到高溫石墨爐中進行石墨化反應,再對高溫石墨化后材料進行球磨,制備得到所需的高容量天然石墨基負極材料。本發明采用的高容量天然石墨基負極材料制備方法制得的負極材料具有高導電性
本發明涉及電池領域,具體涉及一種瀝青基鈉離子電極硬碳負極材料及其制備方法。制備方法包括以下步驟:步驟1,制備硅化鉿粉末;步驟2,制備硅化鉿&硒化鈷復合微球;步驟3,將硅化鉿&硒化鈷復合微球、還原氧化石墨烯和瀝青混合,進行球磨處理,得到瀝青基混合料;步驟4,將瀝青基混合料置于石墨爐內,通入氮氣作為保護氣,升溫處理,冷卻后,得到硬碳負極材料。本發明以硅化鉿&硒化鈷復合微球、還原氧化石墨烯和瀝青為原料,制備了一種鈉離子電極硬碳負極材料,該負極材料不僅在比容量和庫倫效率方面表現優異。
本發明公開了一種鑭鉛金屬間化合物LaPb3的球料及其制備方法。本發明屬于新材料技術領域,具體涉及核聚變中子倍增劑材料技術領域。本發明包括以下步驟:將LaPb3原料、磨球、液體添加劑按照比例放置于惰性氣體保護的球磨罐中;對球磨罐進行360度全方位球磨處理;對球磨后物質進行篩分,烘干后得到球料。所述制備方法通過濕法球磨調控原料團聚成形,在室溫下實現了鑭鉛金屬間化合物LaPb3球料制備,可以滿足中子倍增劑材料外觀尺寸要求。
本發明公開了一種BC電池的制備工藝,包括以下步驟:S1、以光誘導工藝,在N電極表面制備第一金屬層;S2、以真空沉積工藝,在電池片背面依次沉積第二金屬層、阻障層和種子層;所述第二金屬層的材料和所述第一金屬層的材料不同;S3、對電池片背面進行圖形化工藝,露出待電鍍區域;S4、在待電鍍區域通過電鍍工藝制備金屬柵線;S5、去除掩膜層、種子層、阻障層及第二金屬層。本申請通過光電誘導工藝在N電極制備鎳金屬層,N面與鎳金屬形成歐姆接觸,在P電極表面制備鋁金屬層,P面與鋁金屬形成歐姆接觸,降低金屬接觸面的復合
本發明公開的一種鋰電負極高溫回轉窯用集成模塊化高壓機械密封裝置,包括外蓋板以及固定安裝在外蓋板一側的密封載體;密封載體一側設置有密封動環,密封動環的頂部與密封載體之間設置有多個圓柱滾動體;密封載體上安裝有第一陶瓷纖維盤根與聚四氟乙烯盤根,陶瓷纖維盤根用于阻擋高溫熱煙;第一陶瓷纖維盤根與聚四氟乙烯盤根一側均設置有環形板,環形板一側設置有滑動塊;外蓋板一側設置有多個氮氣入口與至少一個排氣口;
本發明屬于鈉離子電池電解液技術領域,具體公開了一種無負極鈉金屬電池電解液及其制備方法和應用,所述無負極鈉金屬電池電解液包括有機溶劑、鈉鹽和補鈉添加劑;所述補鈉添加劑包括三甲基硅醇鈉、氨基鈉中的至少一種。本發明的電解液通過合理配置,在無負極鈉金屬電池電極?電解液界面形成致密固體電解質界面膜(SEI膜),有效補償SEI形成階段活性鈉的不可逆損失,減少循環過程中的可逆容量損失,提升電池循環穩定性和安全性。
本發明具體涉及一種配位聚合物納米線隔膜材料、制備方法及在鈉離子電池領域的應用。針對傳統聚烯烴和玻璃纖維隔膜存在的孔隙率低、潤濕性差、熱穩定性不足及難以降解等問題,本發明提出以過渡金屬化合物和次氮基三乙酸為原料,通過水熱反應制備隔膜材料的方法。該隔膜能夠有效提升鈉離子的傳輸效率,優化電池的電化學性能,其耐高溫(250℃)、高電壓窗口(4.8 V)及優異吸液性等特性顯著提升了電池的安全性和循環性能。為鈉離子電池提供了一種高效、低成本且環境友好的隔膜解決方案,具有重要的工業化應用前景。
本發明公開了一種石墨烯粉體材料制備方法,具體涉及粉體材料混合技術領域,包括將石墨烯粉體投放至主上料斗中,將輔助粉體投放至副上料斗中,控制附著帶持續運動,使石墨烯粉體層和疊加在其上方的輔助粉體層一同向后輸送,直至輸送至落料區域處,啟動攪拌組件對攪拌倉中已經預混合的粉體材料進行二次攪拌混合,關閉攪拌組件,將混合后的粉體材料取出。本發明借助主延伸管的輸出縫隙和副延伸管的輸出縫隙的限制,使輔助粉體能夠均勻的鋪設在預先形成的石墨烯粉體層上
本發明公開了一種直流低功耗納米級半導體電伴熱膜片,本發明涉及電伴熱膜片技術領域,包括制備發熱層,制備電極層,在發熱層和電極層之間添加隔熱緩沖層制成電伴熱膜片,本發明的優點在于:通過將納米顆粒均勻分散有機半導體中,能夠有效調節發熱層的局部電阻,由于納米顆粒的尺寸小且分布均勻,能夠避免因局部電阻過大或過小而引起的熱點或冷點現象,納米顆粒與有機半導體之間的相互作用可以抑制熱聚集,有機半導體在發熱過程中可能會因為局部熱量過高而導致材料性能下降或產生局部熱應力。
本發明公開了一種復合硫正極的制備方法及其在全固態電池的應用,涉及電池材料制備技術領域。復合硫正極包括:硫/碳復合材料、功能性玻璃態硫化物電解質、導電劑和粘結劑。通過對傳統玻璃態硫化物電解質進行摻雜改性,賦予其催化固相硫轉化,降低固相硫轉化能壘,加速固相硫轉化動力學過程。制備得到的功能性玻璃態硫化物電解質具有優異的機械性能,使得進一步制備得到的復合硫正極內部在充放電循環中確保各相界面的緊密接觸,構建高效且穩定的離子傳輸網絡,顯著提升活性物質的利用率。
本發明公開了一種基于垂直硅納米線的全環柵光伏場效應晶體管及其制備方法,所述光伏場效應晶體管以垂直的硅納米線作為溝道,將橫向寬度轉換成縱向深度,更易實現大規模陣列中單個器件的物理隔離,同時大幅度提升光伏場效應晶體管的集成度。所述硅納米線穿過二維材料薄膜,二維材料薄膜以原子層厚度全環繞包裹硅納米線,形成環柵結構。該環柵結構依賴于二維材料優異的機械柔性和原子力顯微鏡球探針納米級的無損修飾。
本發明提供了一種納米高性能鐵溝澆注料的制備方法,屬于耐火材料技術領域,該制備方法包括如下步驟:S1、按重量份數計,配置如下原料:棕剛玉62?67份、碳化硅18?22份、摻鈣介孔氧化鋯4?7份、蛭石2?5份、α氧化鋁微粉6?8份、鈦白粉2?3份、焦炭粉1?3份、鋁粉0.1?0.3份、硅粉1?3份、鈦粉1?2份、納米氧化鋁1?3份、結合劑2?3份和減水劑0.3?0.5份;S2、將S1中原料投入攪拌機中,攪拌10?15min,混勻,即得所述納米高性能鐵溝澆注料。本發明降低澆注料在1450℃高溫使用環境下的顯氣孔率,提高其高溫耐壓強度。
中冶有色為您提供最新的有色金屬新能源材料技術理論與應用信息,涵蓋發明專利、權利要求、說明書、技術領域、背景技術、實用新型內容及具體實施方式等有色技術內容。打造最具專業性的有色金屬技術理論與應用平臺!